Heat Shock Protein 90 Regulates the Metaphase-Anaphase Transition in a Polo-Like Kinase-Dependent Manner

نویسنده

  • Guillermo de Cárcer
چکیده

We have shown previously that the molecular chaperone heat shock protein 90 (Hsp90) is required for a proper centrosome function. Indeed, this Hsp90 function seems to be reflected in Polo-like kinase stability. Inhibition of Hsp90 in HeLa cells results in cell cycle arrest either in G2 stage or at the metaphase-anaphase transition. Here, we show that this inhibition leads to inactivation of the anaphase-promoting complex or cyclosome by both dephosphorylation and induction of the spindle assembly checkpoint. Hsp90 inhibition compromises two of the main mitotic kinases, Polo-like kinase 1 (Plk1) and cdc2. Interestingly, this mitotic arrest does not occur in certain tumor cell lines where Hsp90 and Plk1 are not associated. Those cells are able to process mitosis successfully and have an active Plk1 despite Hsp90 inactivation. Therefore, it seems that Hsp90 regulates completion of mitosis depending on its association with Plk1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat shock protein 90 regulates the metaphase-anaphase transition in a polo-like kinase-dependent manner.

We have shown previously that the molecular chaperone heat shock protein 90 (Hsp90) is required for a proper centrosome function. Indeed, this Hsp90 function seems to be reflected in Polo-like kinase stability. Inhibition of Hsp90 in HeLa cells results in cell cycle arrest either in G2 stage or at the metaphase-anaphase transition. Here, we show that this inhibition leads to inactivation of the...

متن کامل

Role of Survivin in cytokinesis revealed by a separation-of-function allele

The chromosomal passenger complex (CPC), containing Aurora B kinase, Inner Centromere Protein, Survivin, and Borealin, regulates chromosome condensation and interaction between kinetochores and microtubules at metaphase, then relocalizes to midzone microtubules at anaphase and regulates central spindle organization and cytokinesis. However, the precise role(s) played by the CPC in anaphase have...

متن کامل

PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1-Thr210 phosphorylation. Plk1-Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown...

متن کامل

Polo-like kinase 1: target and regulator of anaphase-promoting complex/cyclosome-dependent proteolysis.

Polo-like kinase 1 (Plk1) is a key regulator of progression through mitosis. Although Plk1 seems to be dispensable for entry into mitosis, its role in spindle formation and exit from mitosis is crucial. Recent evidence suggests that a major role of Plk1 in exit from mitosis is the regulation of inhibitors of the anaphase-promoting complex/cyclosome (APC/C), such as the early mitotic inhibitor 1...

متن کامل

The polo box is required for multiple functions of Plx1 in mitosis.

Polo-like kinases comprise a family of evolutionarily conserved serine/threonine protein kinases that play multiple roles in cell cycle regulation. In addition to the N-terminal catalytic domain, polo-like kinases have one or two highly conserved C-terminal non-catalytic regions, termed polo boxes. These motifs are required for targeting these kinases to subcellular mitotic structures. Here we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004